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ON THE USE OF THE REACH-BACK CHARACTERISTICS 
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SUMMARY 
The Holly-Preissmann two-point finite difference scheme (HP method) has been popularly used for solving 
the advection equation. The key idea of this scheme is to solve the dependent variable (i.e. the concentration 
for the pollutant transport problem) by the method of characteristics with the use of cubic interpolation on 
the spatial axis. The interpolating polynomials of higher order are constructed by use of the dependent 
variable and its derivatives at two adjacent grid points. In this paper a new interpolating technique is 
introduced for incorporation with the Holly-Preissmann two-point method. The new method is denoted 
herein as the Holly-Preissmann reach-back method (HPRB) and allows the characteristics to project back 
several time steps beyond the present time level. Through stability analyses it has been observed that the 
increase of the reach-back time step numbers for the characteristics indeed reduces the numerical damping 
and dispersive phenomena. A schematic model has been constructed to demonstrate the merits of this new 
technique for the calculation of the pure advection and dispersion equations. Numerical experiments and 
comparisons with analytical solutions which support and demonstrate this new technique are presented. 

KEY WORDS Advection Diffusion Numerical simulation 

INTRODUCTION 

In predicting the pollutant transport in a one-dimensional channel flow by using numerical 
simulation, one has to be very careful to avoid the possible diffusion and dispersion induced 
numerically. Holly and Preissmann' have presented an excellent method for the calculation of 
advection in one and two dimensions. This method is the well known Holly-Preissmann two- 
point method (HP method) which is based on the construction of higher-order interpolating 
polynomials between the dependent variable and its derivatives for two adjacent points on the 
spatial axis. In comparison with some other existing schemes it has been found that the H P  
method gives fewest numerical dispersion and diffusion problems. In particular, for the case of 
transport in a coastal area where the transport phenomenon is dominated by advection rather 
than diffusion, the numerical damping can be minimized to the greatest extent by using the H P  
method to compute the advection. Therefore it has been very popular to apply the HP  method to 
solve the mass transport equation. 

In fact, the HP  method is a kind of characteristics method in which only one characteristic is 
considered. When one looks at the unsteady flow problems solved by the characteristics method, it 
is seen that many investigators have improved the characteristics method by including various 
better and more attractive features: some have extended the characteristics outwards in distance, 
e.g. References 2-4; others have extended them backwards in time, e.g. References 5 and 6. Each 
extension has its own appropriate interpolation scheme and its accompanying improvements and 
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merits. A similar concept of extending the characteristics outwards in space or backwards in time 
has also been applied to the HP method for solving the advection equation by Yang and Wang’ 
and Yang and Hsu* respectively. The main aim of the former paper is to extend the original 
Holly-Preissmann method for solving the dispersion equation under the condition Cr > 1 (Cr is 
the Courant number). The latter paper presents a scheme using time line interpolation instead of 
spatial interpolation for the Holly-Preissmann method. 
In this paper a concept similar to the temporal reach-back scheme presented by Laig is 

applied to the HP method. The key feature of this scheme is that the characteristic is allowed to 
project back beyond the present time level for spatial interpolation. Error analyses in terms of 
damping and dispersive factors for the HPRB method are investigated and compared with those 
for the HP method. In fact, the HP method is a special case of the HPRB method in which no 
reach-back characteristics are considered. The solutions for the linear advection equation solved 
by the use of the HPRB method are compared with those solved by the HP method and with the 
analytical solution. 

For the advection4iffusion (i.e. dispersion) problem the split operator algorithm is used to 
compute the advection and diffusion separately but successively in one time step. For the 
advection portion, as mentioned previously for the purpose of comparison, both the HPRB and 
HP methods are used in this paper. For the diffusion portion the well known Crank-Nicholson 
method is used. A schematic model is constructed to demonstrate and evaluate the applicability of 
this new technique. 

REVIEW O F  HP METHOD 

For the one-dimensional case the pure advection equation of concentration C of a contaminant 
can be written as 

where x is the distance along the positive direction of flow, t is the time, u(x, t) is the time- 
dependent flow velocity (assumed to 
concentration at any point and time. 

along 

be directed in the positive x-direction) and C(x, t )  is the 
Equation (1) can also be stated as 

dx 
- = u (x, t). 
dt (3) 

Integration of the above equations yields 

along 
c,= c, (4) 

( 5 )  Xh - X, = 1; U(X, t) dt. 

When u(x, t) = constant = uo, 

x h  - X, = Uo At. (6) 

The schematic diagram of the characteristics trajectory is shown in Figure 1. ch is the unknown 
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Figure 1. Schematic grid diagram for HP method 

concentration for grid point h at time level n, which is to be solved. C ,  is the concentration for grid 
point f at time level n - 1 ,  in which concentrations for all grid points are known. 

Holly and Preissmann' developed a two-point fourth-order method for evaluating ch. They 
introduced C,-.', C ,  and their spatial derivatives C X , - ' ,  C X ,  at the present time level as 
dependent variables to construct a cubic interpolation polynomial over the interval (j- 1 ,  j): 

(7) 
where a i d 4  are coefficients which can be found in Holly and Preissmann's paper' and will be 
restated in the following section;j and j- 1 indicate the computation points; n indicates the time 
level. The newly introduced variables CX, -  and C X ,  have to be advected also. By following a 
similar procedure to that described above, cxh can be obtained as 

(8) 
where b,-b, are coefficients which can again be found in Holly and Preissmann's paper' and will 
be restated in the following section also. 

Ch = cf = a1 c;:: + a2 C ; - l +  a3 Cxy::  + a4CXy' ' 

CXh= cX ,=  bl CyI :  + b,Cj"-'+ b3CX;I :  + b,CX;-' ,  

DESCRIPTION OF NEW METHOD 

As mentioned previously, when the concentrations are known only at fixed grid points, referring 
to Figure 1 ,  interpolation is usually required to calculate the unknown concentration for the 
characteristics. Instead of the HP spatial interpolation technique described previously, the present 
method is to let the characteristics project back beyond the present time level for the spatial 
interpolation as indicated in Figure 2. The similar interpolating function can be expressed as 

C,= C q = a l  CQn-" + a2Cz-" +a3 CX:-"+ a,CX:-", (9) 
where C"-" and CX"-" denote the concentration and its derivative with respect to space at time 
level n - m as indicated in Figure 2; m is the reach-back number; s and o represent any two adjacent 
points which the characteristics foot on the spatial axis falls in between. The coefficients ~ 1 - ~ 4  are 
expressed as 

a,=a2(3-Za),  a 2 = 1 - a l ,  a,=a2(1-a)Ax, a4= -a(l-a)2Ax, 

where a is the interpolation parameter which is the decimal portion of mCr and is self-explanatory 
from Figure 2; Cr is the Courant number. A similar argument to that for deriving equation (8) has 
also to be taken into account here. The derivative of concentration also has to be advected. 
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Figure 2. Schematic grid diagram for HPRB method 

Therefore C X  at point p can be obtained as 

CX,=  C X , =  b ,  C:-"'+ bZC: -m + b ,  CX:-"+ b4CX!-"', 

where 

b ,  = 6a(a - l)/Ax, b ,  = - b ,  , b, = a(3a - 2), b4 = (a - 1) (3a - 1). 

Equations (9) and (10) complete the calculation of pure advection of the concentration and its 
derivative for one time step. This scheme is of fourth-order accuracy. The coefficients a1-u4 and 
b,-b, are identical to those of the original Holly-Preissmann method and are unchanged by the 
process of allowing the characteristics to project back beyond one time step. 

ERROR ANALYSIS 

The accuracy of the scheme can be investigated through the analysis of the errors in the calculation 
of pure advection of a simple sine wave. An error analysis is performed to provide quantitative 
information by using the von Neumann method," which assumes the solution can be described as 
a linear sinusoidal wave. 

The error analysis results in two quantities, the damping factor R, and the wave speed 
factor R,. R, is the modulus of the complex ratio of numerical solution to actual solution after one 
time step. R, is the ratio of numerical wave speed to actual wave speed after one physical wave 
travel time. 

From the advection equation (1) a Fourier series solution is assumed. When it is written for the 
grid points the solution can be expressed as 

m 

k =  1 
~ ( X Y  t)' 1 Ckexp[i(akx+pkt)]~ (1 1) 

where a = 2n/L ( L  is the wavelength) and p = 2a/T ( T  is the wave period). By focusing on the kth 
term and substituting into equations (9) and (10) one can obtain the relations 

Ck(exp(i/3krnAt)-a,exp[-iak(r+ l)Ax] -a,exp(-ira,Ax)} 

+cxk{ -Ua,eXp[-i(r+ l)akAX]-U,eXp(-irUkAX)} =o, (12) 
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CX,(exp(i/?,rnAt)-b,exp[ -io,(r+ l)Ax] -b4exp( -iro,Ax)} 

+ C k {  -b,exp[-i(r+ l)a,Ax]-b,exp(-ira,Ax))=O, (13) 
where r is the integer portion of mCr, At is the time interval and Ax is the space interval. The 
eigenvalues are determined by setting the coefficient determinant to zero. By letting 

cp = exp(i&At) and 6 = exp( - io,Ax), 

one can obtain 

The complex amplification factor cp, which can be solved from the above equation, provides 
insight to the stability and numerical dispersive character of the numerical scheme; cp can also be 
expressed as 

cp = ~ ( C O S  8 + i sin 0), (1 5 )  
where is the amplitude of cp and O is the degree of cp. Then the amplification factor R ,  and the 
dispersive factor R ,  for one time step can be obtained as 

where I = L/Ax. 
Figures 3(ab3(e) show the amplitude portraits for Cr =01,0*25,0*5,0.75 and 0.9 respectively. 

Each figure shows a comparison of the results for reach-back numbers m = 1,2,3 and 4. In fact, the 
case for m =  1 is identical to the HP method. From all of these figures one can deduce a general 
tendency, namely the values of R ,  and R ,  approach unity when no damping occurs as the reach- 
back number m increases. For Cr = 0.25 (Figure 3(b)) the value of R ,  for m = 4 is equal to unity; this 
is so because the characteristic intercepts the grid point at time level m = 4. Similarly, for Cr =0.5 
(Figure 3(c)) one can observe that R, = 1-0 when m = 2 and 4; and for Cr =0*75, R ,  is equal to unity 
when m=4 as shown in Figure 3(d). This should also be true for the phase portraits shown in 
Figures 4(a)-4(d). In particular, it is known that for Cr = O m 5  the value of R ,  will always be equal to 
unity for any value of m. Therefore the phase portrait for Cr=0.5 is not shown here. 

In addition, Figures 3(a)-3(e) indicate that the resolution for R, increases as the reach-back 
number increases. Similarly, Figures 4(a)-4(d) show this consistent tendency for the phase 
portraits. If this is the case, then it becomes very important for one to determine how large a reach- 
back number should be used. From several test cases and the results discussed above it seems that 
the reach-back number m = 4 should be sufficient. Using a larger value of reach-back number gives 
an insignificant improvement in resolution. In addition, difficulties in setting up the initial 
conditions may arise when a large reach-back number is used. 

SOLUTION FOR DISPERSION EQUATION 

The linear dispersion equation can be expressed as a combination of pure advection and diffusion. 
The equation can be written as 

DC azc  dx 
-=v- along d t = ~ O ,  Dt ax, 

where v is a diffusion coefficient. 
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This equation can be solved by decomposition into pure advection and pure diffusion using a 
split operator method.' The advection can first be solved by the HPRB method as described in the 
previous section. The concentration and its derivative after the advection are denoted as C; and 
CX; .  Then the diffusion portion can be computed by use of the Crank-Nicholson method, which 
can be expressed as 

(1 - $)vAt (c;;;-2c;-1+c;I;), $vAt 
Ax2 Ax2 

c; - c; =--c;+ 1 - 2ci" + c;- + 
where $ is a weighting factor, For the calculation in the next section $=05 is used. 
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By the same argument as that stated in the advection portion, one has to diffuse the term C X .  
The expression for the diffusion of C X  can be written as 

*vAt ( l - + ) v A t  cx;-cxja=-(cx;+l - 2 c x ; + c x ; - , ) +  (cx;;: - 2 c x ; - ’ + c x ; 3 .  (20) 
Ax2 Ax2 

From equations (19) and (20) the concentration C and its derivative C X  after the diffusion process 
at the next time step t” can be obtained. This completes the calculation for the dispersion equation. 

DEMONSTRATION AND EVALUATION 

Calculation of pure advection 

The pure advection of a Gaussian concentration distribution for different velocities, i.e. for 
different Courant numbers Cr, with constant At and Ax, has been computed. The distribution of 
mean position 3000 m and standard deviation 200 m is defined on the regular grid Ax = 200 m. 
Upstream and downstream boundary conditions are assumed to be C = 0 and C X  = 0 respectively. 
Test cases with Cr = 0.1,0.25,0.5 and 0-9 are simulated for time t = 7oooO,28000,14000 and 8000 s 
respectively. When a reach-back number m greater than unity is used, other schemes may be 
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needed to set up the initial conditions. For those cases studied herein the HP method is used to 
establish the initial condition. 

The results computed by the use of HPRB with various reach-back numbers and the analytical 
solution are shown in Figures 5(ab5(d). In fact, when rn= 1 the HPRB method is identical to the 
original HP  method. From Figure 5(b) it can be seen that the solution for Cr =0.25 and m = 4  is 
identical to the analytical solution. This situation was explained previously because the 
characteristic falls exactly on the grid point, hence no error exists. The same situation can be found 
in Figure 5(c) for Cr = 0.5 when rn = 2 and 4. From these test simulations it can be concluded that 
the results get better, i.e. closer to the exact solution, as the reach-back number rn increases. 
However, when the characteristic closes to the grid point, such as is the case for Cr=0.9 
(Figure 5(d)), the effect due to the increase of rn will not be so significant. This should be obvious 
since the exact solution will be obtained when the characteristic falls on the grid point. 

Calculation of dispersion 

A Gaussian distribution and the same boundary conditions as mentioned previously are used 
for the calculation of the dispersion. Cases with Cr = 0.1, 0*25,05 and 0-9 are studied for reach- 
back numbers rn= 1,2, 3 and 4. The diffusivity used for these studies is 0.1 m2 s-'. The results for 
all of the test cases are shown in Figures 6(abqd). From these results it can again be seen that an 
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increase in reach-back number gives better results, but again the improvement will not be obvious 
when the characteristic approaches the grid point, such as is the case Cr = 0.9 (Figure qd)). 

CONCLUSIONS 

The Holly-Preissmann two-point fourth-order scheme has been a very popular and successful 
scheme for computation of the advection equation. On the basis of the main framework of the H P  
method, in this paper a new interpolation technique taking into account the reach-back 
characteristics is introduced. From the stability analysis and the demonstration of the test 
simulation, one finds that for the advection problem an increase in reach-back number can reduce 
the numerical diffusion and dispersion problems. When the characteristic projects back exactly on 
the grid point, the result computed is identical to the exact solution. The dispersion equation is 
solved by the split operator algorithm. The advection portion is calculated by using the HPRB 
scheme and the diffusion portion is computed by using the Crank-Nicholson scheme. For the 
weak diffusion case presented in this paper, the effect due to the increase of the reach-back number 
is quite convincing. Furthermore, on the basis of the numerical experiments and the demon- 
stration presented, the reach-back number m = 4 seems to be sufficient for accurate calculation. In 
practice, the higher the reach-back number used, the better are the results that can be obtained. 
The use of m = 4  is a compromise which already gives a significant improvement in solution 
accuracy without introducing problems in initiating the calculation. 
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APPENDIX: NOTATION 

coefficients for the interpolation polynomials 
coefficients for the interpolation polynomials 
concentration 
concentration derivative with respect to space 
dimensionless spatial discretization, L/Ax 
computation point 
component of sinusoidal wave 
length of sinusoidal wave 
integer denoting reach-back number 
time level index 
damping factor 
dispersive factor 
wave period 
time 
velocity 
distance along the flow direction 
space increment 
time increment 
diffusivi t y 
2nlL 
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B 2n/T 
4 exp(iak Ax) 

i amplitude of cp 
8 degree of cp * weighting factor 

cp exp(iBkAt) 
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